

A new architecture for making highly scalable applications1.

Author: Harry Fitié

AB-Ontwikkeling BV
Lingedijk 21 4002XH Tiel, The Netherlands

info@communsens.com

Die Grenze meiner Sprache bedeuten die Grenze meiner Welt [1].
L. Wittgenstein

Abstract

An application is a logical image of the world on a computer. A scalable application is an
application that allows one to update that logical image at run time. To put it in opera-
tional terms: an application is scalable if a client can change between time T1 and time T2

1. the logic of the application as expressed by language L;
2. the structure and volume of the stored knowledge;
3. the user interface of the application,

while clients working with the application at time T1 will work with the changed applica-
tion at time T2 without performing any special action between T1 and T2.

In order to realize such a scalable application a new architecture has been developed that
fully orbits around language. In order to verify the soundness of that architecture a pro-
gram has been build. Both architecture and program are called CommunSENS.
The main purpose of this paper is

1. to list the relevant elements of the architecture;
2. to give a visual presentation of how the program and its image of the world look

like;
3. to give a visual presentation of how the image can be updated.

Some relevant philosophical and practical backgrounds are included in the appendixes.

 1

mailto:info@communsens.com

1 Panta rhei

Panta rhei, all flows. These words express the observation that the world is subject to perma-
nent change. In order to live in such a world every creature must have some image of that
world. In order to survive in such a world every creature must have some ability to update that
image. In a static world it is enough to be. In a dynamic world one has to become2. This be-
coming reflects the capacity to adapt.

2 Scalable applications

An application is a logical image of the world (as perceived by a human being) on a com-
puter. A scalable application is an application that allows you to update that logical image at
run time. To put it in operational terms: an application is scalable if a client can change be-
tween time T1 and time T2

1. the logic of the application as expressed by language L;
2. the structure and volume of the stored knowledge;
3. the user interface of the application;

while clients working with the application at time T1 will work with the changed application
at time T2 without performing any special action between T1 and T2.

Suppose there is such a scalable application. Then the initial image of the world that the pro-
gram contains (say I) can be changed at run time. So if the application to be build should give
another image of the world (say X) one should update I to X. In this way a scalable applica-
tion is not an instant computer program but rather a problication: a program that becomes the
application. This becoming never stops: whenever X ceases to be an adequate image of the
world, it can be updated to a more proper image.

3 Idea

CommunSENS has been based on the proposition of L. Wittgenstein as presented at the title
page: The limits of my language mean the limits of my world. If that language is 'fixed' the
world it can describe is also fixed. On the other hand if the language is not fixed (scalable) it
will have the capacity to describe a world that is subject to permanent change.

Figure 1 visualizes the idea. If the language is scalable it can be upsized (both in quantity and
quality). In general, an expanded language expresses a more ‘complete’ world. Theoretically,
there is no limit to the expansion of a scalable language. If a language is scalable it also can
be downsized. One can downsize L2 to L1 and L1 to L0. However, in the case of downsizing
there are two limits. The first one is an absolute limit. One can not downsize the language
beyond the origin O (an empty language). Now the question rises: when does a language be-
comes a language? Clearly, an empty language does not deserve that name. What about a lan-
guage that contains one word? What about a language containing 10 words? What about a
language containing some words and some syntax? Somewhere between an empty language
and a fully developed language there is a point where ‘there is language’. The only way to
find the language point is to use language itself: the language point is that point of the con-
tinuum at which the language just defines itself (L0). So the second limit with respect to
downsizing is the language point L0

3. This is the logical limit.

 2

Figure 1: The limits of my language mean the limits of my world

4 Architecture

Starting with the language, the elaboration of idea to architecture takes eight steps:

1. Define a language that defines itself (L0). This can be compared with writing a book
about language L in language L.

2. Make the language (upsize) scalable with respect to lexicon and syntax. Now, any
book can be written in language L.

3. Design a universal database that symbolically stores any utterance expressed in lan-
guage L.

4. Write the book about the user interface. A communication cycle between man and
machine can be started.

5. Design functionality for every kind of executable utterance in such a way that it can be
applied to the data-agent that applies it.

6. Design a synchronisation mechanism that handles the situation in which executable ut-
terances are modified while they are executing.

7. Define the system in language L and build it in such a way that it could (re-)build it-
self. The result is a basic image of the world (I).

8. Build an application X by updating image I to image X.

Note that the resulting image of the world is fully closed: all information is expressed by lan-
guage utterances (including user data). Also note that because of L0, the downsize capacity of
the architecture has a logical limit.

5 Main concepts

Most of the elements of the architecture are explained in some detail in the appendixes. At
this place the results of the architecture as a whole will be discussed. Besides language, four
main concepts play an important role in the elaboration:

• the concept of self definition;
• the concept of self building;
• the concept of a basic image of the world;
• the concept of updating that basic image.

 3

The first three concepts can be visualized by lithography of the Dutch artist Maurits Escher
[2]. Figure 2 shows a picture of two hands that draw each other. In a way, the left hand de-
fines the right hand and the right hand defines the left hand (self definition). The picture has
been designed in such a way that it could have been drawn by the hands themselves (self
building). The lithography as a whole can be viewed as a basic image. The image is basic be-
cause one can not remove essential parts of it (hand nor pencil) without destroying the very
idea behind the image. It is holistic.

Figure 2: Maurits Cornelis Escher, 'Tekenende handen', 1948,
lithografie.

6 Basic images

Like the hands that have been drawn to draw themselves, CommunSENS has been build to
build itself. This resulted in five basic images.

1. L0: the language that defines itself and all other parts of the system;
2. Lp: the parser that parses itself and all other parts of the system;
3. Ld: the designer that designs itself and all other parts of the system;
4. Lh: the help function that helps itself and all other parts of the system;
5. Lb: the debugger that partially debugs itself and, fully, all other parts of the system.

The first image of the list is L0. The other images are expansions of that basic image. Al-
though they are ‘less basic’ they still are holistic. To make this point clear, consider a brain
surgeon who performs surgery on his own brain. As long as the result of his surgery does not
interfere with his abilities to operate he can continue. However, if the operation affects, for
example, his locomotion, the system of the person as surgeon will halt. In general, any scal-
able system that has functionality that can be applied to change itself is holistic. It can not be
downsized beyond a certain point.

As an example, the design form that designs itself, is discussed. Figure 3 shows the main form
that is used for designing forms. It consists of two sub forms: FForm at the left side and
FDesign at the right side. If a form is selected in FForm its complete visual, logical and be-
havioural definition is visualized in FDesign. You can update that definition by adding or de-
leting components, by changing properties of the components, by changing the behaviour of

 4

components (events), etc. If the form in question is on the screen, these changes will be im-
mediately reflected.

Figure 3: The design form that designs itself.

If you look closer at figure 3, you will see that the selected form in FForm (left side) is
FDesign. So the right side (FDesign) shows the complete definition of FDesign. In this way
FDesign is contained in itself. This feature makes it possible to use FDesign to further design
itself. For example, if you add a component from the toolbar to the tree, FDesign will directly
show that component. On the other hand, if you remove the component Tabsheet1 'Visual
flow' both tab sheet and tree will vanish from the form. It is clear that downsizing these kinds
of basic images should be done with care.

7 Updating the basic image

Updating the basic image of the worlds boils down to: updating the language utterances that
express that world. Figure 4 shows the main form that has been designed for this purpose. At
the left side there is a project tree that allows navigation through all projects. These projects
include a linguistic definition of the language itself, linguistic definitions of the builder forms
(including the project and parser forms themselves), linguistic definitions of the user inter-
face, etc. At the right side of the main form there is the parse editor. The editor shows the con-
tents of the file that is selected in the project tree. In this editor you can enter new language
utterances that define an extended image. Now, updating the initial image is nothing more
than parsing (or deleting) these language utterances. If you parse new utterances you act as
moulder who uses modelling clay to build the image. If you delete utterances you act as the
sculptor who removes those stone particles that hide the image.

 5

Figure4: Tools for updating the image of the world

It should be noted that all changes to the image including those originated from operations as
cut, copy, paste, etc. are always expressed as new, updated or deleted language utterances.
Therefore, designing a form in FDesign by using the mouse will give the same results as up-
dating the corresponding language utterances in the parser.

8 Unity of functionality and knowledge

This simple linguistic update mechanism of the image reveals another feature of the system
that is quiet attractive. Normally if one uses tools to build an application, neither the function-
ality nor the knowledge (F&K) that is contained in the tools will be contained in the new ap-
plication. Because CommunSENS is an integral part of the new application both are auto-
matically transferred. This works to both sides: old F&K can be applied to an expanded im-
age, new F&K can be applied to the original image. So during the never ending effort of up-
dating the image of the world, there will be unity of knowledge and functionality. Conse-
quently, if the steps mentioned in paragraph 4 are applied to a computer operation system as a
whole, unity of knowledge and functionality will be achieved throughout the computer.

9 System and restrictions

This paper is concluded with two notes about system and restrictions. The heart of the system
is a DLL of about 0.6 Mb. It contains the basic functionality and logic. The basic images, in-
cluding the language and the definition of the system itself, are stored in the universal data-
base. The basic images can be used as starting point for an update to another image. It also is
possible to rebuild the system at run time with these restrictions in mind:

 6

• do not remove any data that is needed for the self definition of the language;
• do not remove any data that gives a single entree to certain functionality.

In terms of the lithography, these restrictions boil down to: do not erase the drawing pencils or
the drawing hands.

Appendix 1 The human paradox

Without doubt, the species that has the most complete image of the world (and even of the
'world' outside his immanent world) is mankind. In this sense, man is the most complete crea-
tion.

Why is man the most complete creation? What is the most characteristic other feature of man
compared to other creatures? The answer is quite paradoxical: man is the most complete crea-
tion because he is born the least complete [3].

To make this point clear, enter the world of a 'lower' animal like an ant. An ant is born as an
ant. In the process of 'becoming an ant' all essential steps are taken in the foetal period. Once
out of the egg, the process of 'becoming an ant' stops. As an ant it directly steps into the ants’
world. This world is closed as far as its possibilities are concerned, as it was programmed by
the constitution of the creature at birth. Every stimulus from the environment or from the
body is handled by instinctive rules or is ignored. In this sense, an ants’ world is an absolutely
orderly world, without surprises. But it also is a small world

When a human child is born it is not capable of much. While the ant prepares to go to work,
the behaviour of the child is very limited. Compared to other creatures from the animal world
a human has a limited and unspecialized pattern of instincts: he is remarkably incomplete. As
a species, mankind would not survive if this omission was not compensated by the ability of
learning and thinking. In contrast to the ant who is born as an ant, a human child is not born as
a man but as a 'creature that becomes a man'. Some of the features of 'being a man' are formed
in the prenatal period especially the physiological features. Other features like speech, count-
ing, historical consciousness, anticipation, etc. are learned in the years after birth. By learning
the relevant rules and how to apply them, a maturing child slowly acquires the world of man
that was not given him at birth.

The process of 'becoming a man' does not stop after learning and applying a certain set of
rules. After all, where do the learned rules themselves come from? Certain rules can be 'de-
tected by accident' (as a connection between a certain action and a certain result within a cer-
tain environment). However most of the rules we learn in our youth have been deliberately
fabricated by wise men in past and present. Therefore, the process of 'becoming a man' will
never stop as long as there are other men who fabricate new rules worth learning. In this
sense, mankind as a whole is involved in a never ending enterprise: creating the world of man.

This line of reasoning has been applied to CommunSENS. When one tries to build a scalable
application, the aim should not be to build a program that is complete. After all the result will
look like an ant: a highly specialized but rather inflexible program. It is better to build an in-
complete program that has the potential of becoming complete. Such a program can be called
a Problication (acronym of PROgram Becoming the appLICATION). CommunSENS can be
considered as an attempt to build such a problication,

 7

Appendix 2 Communication cycle

In appendix 1 it was concluded that to become a man a child has to learn in order to acquire
an image of the world of men. Basically, the process of (declarative) learning takes place in
interaction with other people by means of a communication cycle. Figure 5 shows the com-
munication between two men. Person A has knowledge that is stored in his brain. In order to
transfer that knowledge he should phrase the knowledge (put it into words). The result is a
language utterance that can be transferred to person B (verbal or written). In order to get the
meaning out of the utterance, person B has to parse the utterance. After that the contents of
the utterance can be added to his image.

Fig. 5 Human communication Fig. 6 Man-Machine Fig. 7 Client-Server

In a similar manner one can design a communication cycle between man and machine (figure
6). If the machine runs a client-server application the architecture will look like figure 7 (with
one image for the server application S and one image for each client C that is connected).
Note that all information of the client that affects the image goes through the parser (as in
figure 6)

CommunSENS is an acronym of COMMUNication between SEmantic Network Systems. In
this way the name of the architecture reflects the importance of the communication cycle.

The communication cycle reveals the functional parts that are necessary in order to build an
image. One needs

• a language in which utterances are formulated
• a mechanism for recognizing the symbols that are addressed by the words of the ut-

terance
• a parser that transforms the sequence of words into symbolic knowledge.
• a storage device and structure to store knowledge about the image.
• a mechanism for naming stored symbols;
• a phraser to put symbolic knowledge into a sequence of words.
• a user interface to give clients a view of the server image.

Appendix 3 Universal database: SemNET

If one takes a picture of an object the resulting image will resemble that object. In the same
way the image of the world will resemble the real world. In his famous work Tractatus
logico-philosophicus the Austrian philosopher L. Wittgenstein describes this real world by
means of two ontological propositions [1]

 8

Proposition Description4

1 The world is everything that is the case.
1.1 The world is the totality of facts, not of things.
1.2 The world divides into facts.
2 What is the case, the fact, is the existence of connections.
2.01 A connection is a combination of objects (entities, things).
2.011 It is essential to a thing that it can be a constituent part of a connection.
2.02 The object is simple.
2.03 In the connection objects hang one in another, like the links of a chain.
2.04 The totality of existent connections is the world.

2.05 The totality of existent connections also determines which connections do not
exist.

2.1 We make ourselves images of facts
2.2 The image has the logical form of representation in common with what it pictures
Table.1: Ontological propositions

The two features of objects are

• they are distinguishable from each other;
• they can be part of a connection.

What can be gathered from this? First, there is a set of objects or things, say Σ. Second, a con-
nection can be interpreted as an ordered pair of objects. Third, there is a set, say X, of all or-
dered pairs of objects. Fourth, the world (W) is an element of the power set of X. Fifth, the
image of the world I is an element of the power set of W.

(1) X = {(a,b) | a ∈ Σ and b ∈ Σ)

(2) W ∈ Pow(X)

(3) I ∈ Pow(W)5.

To put it less abstractly, consider X to be a magic block of stone in which each stone particle
is connected to each other stone particle. This stone hides countless possible sculptures (a
power set). From all the possible sculptures that can be made, a divine sculptor creates one by
removing the connections between certain stone particles (W). A human sculptor who just has
an ordinary block of stone at his disposal, can only hope to sculpture to his best abilities the
most significant part (I) of the the structure (W).

Using the verbal definition of an application that has been given in chapter 2, one can define a
server image S as an element of the power set of image I (4). The world of a client C that exe-
cutes within the server application can be considered as an element of the power set of S (5).

(4) S ∈ Pow(I).

(5) C ∈ Pow(S).

 9

By means of his senses man can acquire an image of the world. Because the brain is definitely
finite, this image will also be definitely finite. It will look something like this (where a1, a2,
b1, .. are symbols that refer to specific objects).

(6) I = {..., (a1, a2), (a1, b1), ...}.

This formula has been elaborated to a semantic network. Basically, the network is defined by
a symbol domain, three binary relations and two characteristic functions.

The initial semantic network contains among other things the book about the language, the
book about the user interface and the interface itself. With about 150 thousand symbols and
630 thousand ordered pairs the image was shaped. On an average each symbol is connected to
4.1 other symbols.

Appendix 4 Language Fonal

A formal natural language (Fonal) has been defined, loosely based on the language universals
proposed by the American linguist N. Chomsky [4]. At this place a summary is presented in
which the main structure is sketched (see table 2).

Italic text indicates that the category is directly recursive (e.g. InstructionList Has Instruc-
tionList). All other phrases and the expression are indirectly recursive (e.g. NP of PP of NP).
Syntactic categories in bold, can use some or all of the elements of the last row. A non capi-
talized category indicates a terminal symbol.

Syntactical structures
Grammar (G) Procedure (P)
Sentence (S) Instruction list (IL)

Noun phrase (NP) Verb phrase (VP) EP
AP DP PP
adj

DEFP
QP prep NP

subj PNP vq v NP
Expres-

sion
(EXP)

NP

Numbers, variables, operators, EXP, EP, Procedure calls
Table 2: Summary of syntax of Fonal

Table 3 gives some examples of language utterances. Most of the examples are borrowed
from the book about Fonal in Fonal.

With respect to the image, the purpose of language is four fold

• To prescribe the contents of the image (grammar and sentences)
• To express how one should navigate through the image (prepositional phrases)
• To express how one should query the image (noun phrases)
• To express how one should execute orderly activities on the image (procedures).

 10

Abbreviation Syntactical category <Bold text> is an instance of the category
adj Adjective A Collecting NP
AP Adjective phrase Binary And Relational Operators
DEFP Default phrase Default: {The First Subject}
DP Determiner phrase 1 Of The Subjects
EP Expression phrase {All Operators} Minus {Operator: Minus}
EXP Expression A = {Binary Operators} Union {Verbs}
G Grammar Sentence SenS1, SenS2.
IL Instruction list ‘MyProc’() {A = 2; Return A;} .
NP Noun phrase A Sentence Always Has A NP
P Procedure ‘MyProc’() {A = 2; Return A;} .
PNP Proper name phrase Subject: Subject
PP Prepositional phrase NP With Subject: Subject
prep Preposition NP With Subject: Subject
QP Quantor phrase 1 Of The Subjects
S Sentence ‘SenS1’ A Sentence Always Has A NP
Subj Subject (Noun) Subject
V Verb A Sentence Always Has A NP
VP Verb phrase A Sentence Always Has A NP
Vq Verb quantor A Sentence Always Has A NP
Table3: Examples of utterances of Fonal

Appendix 5 User interface

CommunSENS contains a complete, logical definition of the user interface in Fonal. This
definition stands apart from the actual implementation of the interface on a computer or oper-
ating system. The visual structure of the user interface is based on the taxonomy of Borland's
Visual Component Library [5] which in turn rests on MS Windows. Two kinds of properties
are distinguished. The first category deals with properties that determine the visual aspects of
components as seen by the user. The second category is specifically designed for use with
Fonal. These properties, called set events, deal with the way sets are retrieved, updated,
changed etc. Table 4 shows the most important events that can be used to conduct the behav-
iour of components.

The user interface has been designed in such a way that any set, connected to a component by
the OnGetSet event, can be used as the context for other sets. For example, if component C1
shows the result of the noun phrase All subjects, a second component C2 can show the result
of the noun phrase All symbols classified by this subject. If you select in C1 the subject Pa-
tients you will get in C2 all stored patients. If you select in C1 the subject Procedures, you
will get in C2 all stored procedures. The only thing to be done is setting a property that says
that C1 is the context for C2. In this way most programming will reduce to an enumeration of
noun phrases that are mutually connected by context properties. The forms of figure 3 and 4
have been designed in this way.

 11

Set events Generated at Description

OnGetSet Server Executes a noun phrase that retrieves the symbol set. E.g..
'All patients'

OnGetChildren Server Executes a noun phrase that retrieves the node children for
tree-like components

OnGetParents Server Executes a noun phrase that retrieves the node parents for
tree-like components

OnSetChanged Server Executes a free expression when the set changes (symbols
added or deleted)

OnSelChange Client
Executes a free expression when the selection changes.
Moreover, it automatically updates the symbol stream for
context sensitive components

OnGetName Server Executes a procedure to get the name of a symbol
OnGetColumnName Server Executes a procedure to get column information

OnGetState Server Executes a free expression to get the perfect / imperfect
state of a symbol

OnSelUpdate Server Executes a free expression when a selected symbol has
been updated

OnCommit Server Executes 1 or more noun phrases to collect symbols that
are affected by an image update

OnClick Client Executes a free expression
OnDblClick Client Executes a free expression
Table 4 Most important events

Appendix 6 Client-server architecture
The server has the important task to keep track of the logical and visual state of all informa-
tion that is supplied by a connected client. The knowledge state is represented by the client
image within the server image (see figure 7).
Communication between server and client is realized by messages that contain strings and
symbolic information. For any client that logs in, the server creates a thread. Each thread per-
forms three tasks:

• It decodes messages from the client. These messages contain simple information like
Symbol #1000 is selected in component #1050 or Component #1100 is clicked.

• It executes the event (say #1200) that is connected to the specific component.
• It stores resulting information and returns the information as strings and symbols. At

the client side this information is made suitable for further visual processing.

For theoretical reasons, at any point in time, there is only one thread (the committing thread)
that can update the image. During that time, all other threads are suspended. Because Com-
munSENS is highly scalable it is possible that while thread T1 is suspended in a procedure, a
committing thread T2 deletes this very procedure. It is obvious that when T1 resumes execu-
tion, there is a problem if precautions are not taken.

During execution, every thread keeps track of its execution path. This path is just a stack of
symbols as shown in table 5.

 12

Executable Symbol
... ...
Instruction list #4002
Procedure #4000
Event #1200
Listview #6532
Form #1326
Client #1101
Main Entry Start
Table 5 Execution path of a thread

The stack is pushed on entry of the executable and popped on exit. Now when a committing
thread has updated the image it checks the execution path of every suspended thread to see if
it uses changed information. If so, it sets a crawl back flag. When committing is ready, the
suspended threads resume execution. If the flag is set, they crawl back to the main entree
point and try again. If the flag is not set they continue execution. If the execution can not con-
tinue (e.g. because a complete component like form #1326 has been removed) the user will be
informed that his action can not be performed.

References

1. Wittgenstein Ludwig, Tractatus logico-philosophicus. London 1922. This is the Eng-
lish translation by C. K. Ogden; with an introduction by Bertrand Russell.

2. Escher Maurits Cornelis, Grafiek en tekeningen. Zwolle 1972. All M.C.Escher works:
copyright © Cordon Art B.V., P.O.Box 101, 3740 AC Baarn (The Netherlands). Used
by permission.

3. Berger Peter L, The sacred canopy. New York 1967.
4. Fromkin Victoria, Robert Rodman, An Introduction to Language. New York 1986.
5. Borland C++ Builder 5. Object Hierarchy. Inprise Corp. 2000.

1 This research has been made possible by a grant of the Ministry of Economic Affairs of the Netherlands.
SO/2003/11629/1/2565.
2 In this respect the question is not: to be or not to be. One could say: to become or not to become, that is the
question.
3 Note that the language point L0 is relative, depending on the richness of the language. To my knowledge, the
smallest complete language is defined by Backus-Naur (as BNF-rules). The most extensive complete language is
natural language.
4 Following the Dutch translation of W.F. Hermans (Amsterdam, 1989) the word 'connection' is used instead of
'atomic fact'. The word 'picture' has been replaced by 'image'.
5 The domain of objects is not the same for each image. For the human image the domain will be something like
the neurons in the brain with the axons representing the connections. When the image is on a machine, the do-
main of objects will be numbers stored in memory positions with pointers to these positions representing the
connections.

 13

	1 Panta rhei
	2 Scalable applications
	3 Idea
	4 Architecture
	5 Main concepts
	6 Basic images
	7 Updating the basic image
	8 Unity of functionality and knowledge
	9 System and restrictions
	Appendix 1 The human paradox
	Appendix 2 Communication cycle
	Appendix 3 Universal database: SemNET
	Appendix 4 Language Fonal
	Appendix 5 User interface
	Appendix 6 Client-server architecture
	References

